
1

2020-03-19
1/77

VCU, Department of Computer Science

CMSC 302
Induction and Recursion

Vojislav Kecman

Ch 4 in 6th edition
Ch 5 in 7th edition

2020-03-19
2/77

2020-03-19
3/77

recur

happen again; repeat in one's mind

Synonyms for recur

persist reappear
iterate recrudesce

reiterate repeat
return revert

be remembered be repeated
come again come and go
come back crop up again
haunt thoughts return to mind

run through one's mind
2020-03-19

4/77

Induction and recursion
are related concepts.

Induction is a proof technique,
recursion is a related programming concept.

Induction proof: assume it is true for n, and show it
for n+1 using the assumption.

Recursion: assume you know how to solve the
problem when the input size is n, and design a
solution for the case n+1 using the solution for n.

Note that we could have used numbering as (n-1) and n, instead of n and (n+1)!!!

2

2020-03-19
5/77

Topics

• Mathematical induction
• Well ordered property
• Second principle of induction
• Recursive definition
• Recursive algorithms

It may be good at this point to refresh yourself on predicates, predicate logic a.k.a.
propositional functions. To do this go to my Lecture 2, handouts 02 Propositional
Logic.pdf and start reading from page 59, (you may wish to skip 60-63), and continue
by slide 64. Focus on slide 66 

2020-03-19
6/77

• Important math task is to discover and characterize regular patterns
or sequences.

• The main mathematical tool to prove statements about sequences
is induction.

• Induction is also a very important tool in computer science because
most programs are repetition of a sequence of statements.

• Example on how induction works:
• Imagine climbing an infinitely high ladder. How do you know

whether you will be able to reach an arbitrarily high rung?
• Suppose you make the following two assertions about your climbing:
• 1) I can definitely reach the first rung.
• 2) Once getting to any rung, I can always climb to the next one

up.
• If both statements are true, then by statement 1 you can get to the

first one, and by statement 2, you can get to the second. By
statement 2 again, you can get to the third, and fourth, etc.

• Therefore, you can climb as high as you wish. Note: both of these
assertions are necessary for you to get anywhere on the ladder.

• If only statement 1 is true, you have no guarantee of getting beyond
the first rung.

If only statement 2 is true, you may never be able to get started.

2020-03-19
7/77

• Assume that the rungs of the ladder are numbered with the
positive integers (1,2,3...). Assume a specific property that a
number might have now. Instead of "reaching an arbitrarily
high rung", we can talk about an arbitrary positive integer
having that property P.

• We will use the shorthand P(n) to denote the positive
integer n having property P. How can we use the ladder-
climbing technique to prove that P(n) is true for all positive n?

• The two assertions we need to prove are:
• 1) P(1) is true
• 2) for any positive k, if P(k) is true, then P(k+1) is true

• Assertion 1 means we must show the property is true for 1;
assertion 2 means that if any number has property P then
so does the next number. If we can prove both of these
statements, then P(n) holds for all positive integers, (which is
same as climbing to an arbitrary rung of the ladder).

2020-03-19
8/77

• The Principle of Mathematical Induction can be used as a proof
method on statements that have a particular form, and it can be
stated as follows:

• A proof by mathematical induction that a proposition P(n) is true
for every positive integer n consists of two steps:

• BASIS CASE: Show that the proposition P(1) is true.
• INDUCTIVE STEP: Assume that P(k) is true for an arbitrarily chosen

positive integer k, and show that under that assumption, P(k+1)
must be true.

• From these two steps we conclude (by the principle of mathematical
induction) that for all positive integers n, P(n) is true.

• Note: we don’t prove that P(k) is true (except for k = 1). Instead,
we show that if P(k) is true, then P(k+1) must also be true.
That's all that is necessary according to the Principle of
Mathematical Induction. The assumption that P(k) is true is called
the induction hypothesis.
• Understand that P(n) and P(k) are not numbers; they are the

propositions that are true or false.

3

2020-03-19
9/77

4.1 Mathematical Induction
• A powerful, rigorous technique for proving that

a predicate P(n) is true for every natural
number n, no matter how large.

• Essentially a “domino effect” principle.
• Based on a predicate-logic inference rule:

P(0)
k0 (P(k)P(k+1))
n0 P(n)

“The First Principle of Mathematical Induction”

Inductive step

Basis step

Antecedents

Consequent

Note: it doesn’t matter whether we start with 0 or 1 or 11

2020-03-19
10/77

The “Domino Effect”

• Premise #1: Domino #1 falls.
• Premise #2: For every nℕ,

if domino #n falls, then so
does domino #n+1.

• Conclusion: All of the
dominoes fall down! Note:

this works
even if there
are infinitely
many dominoes!

2020-03-19
11/77

Validity of Induction
• Proof that k0 P(k) is a valid consequent:

Given any k0, the 2nd antecedent
n0 (P(n)P(n+1)) trivially implies that
n0 (n<k)(P(n)P(n+1)), i.e., that (P(0)P(1)) 
(P(1)P(2))  …  (P(k1)P(k)). Repeatedly applying
the hypothetical syllogism rule to adjacent implications
in this list k−1 times then gives us P(0)P(k); which
together with P(0) (antecedent #1) and modus ponens
gives us P(k). Thus k0 P(k). ■

Modus ponens is a very common way to make conclusions in
classical logic, i.e., it’s a rule of inference, and it goes as follows:

If A, then B.
A.
Therefore, B.

See next slide

2020-03-19
12/77

Modus ponens or MP is an
abbreviation of

• modus ponendo ponens
which is an old Latin saying standing for
"the way that affirms by affirming"

It is not a logical law,
it is, rather one of the accepted mechanisms

for the construction of proofs

4

2020-03-19
13/77

Example 1:

Proof

A little more formally, same proof goes as follows

2020-03-19
14/77

Induction Example 1 – Proof by 1st principle

• Prove that the sum of the first n odd positive integers is n2. That is, prove:

• Proof by induction.
– Base case: Let n=1. The sum of the first 1 odd positive integer is 1 which equals 12.

• Inductive step: Prove n1: P(n)P(n+1).
– Let n1, assume P(n), and prove P(n+1).

2

1
)12(:1 nin

n

i
 



P(n)

2

2

1

1

1

)1(
12

)1)1(2()12()12(













 







n
nn

nii
n

i

n

i

2020-03-19
15/77

What actually has just been shown?
• Base case: P(1)
• If P(k) was true, then P(k+1) is true

– i.e., P(k) → P(k+1)

• We know it’s true for P(1)
• Because of P(k) → P(k+1), if it’s true for P(1), then it’s true for P(2)
• Because of P(k) → P(k+1), if it’s true for P(2), then it’s true for P(3)
• Because of P(k) → P(k+1), if it’s true for P(3), then it’s true for P(4)
• Because of P(k) → P(k+1), if it’s true for P(4), then it’s true for P(5)
• And onwards to infinity

• Thus, it must be true for all possible values of n

• In other words, we showed that:

  )P()1P()P()1P(nnkkk 

2020-03-19
16/77

• Theorem. n > 0, n < 2n. Prove it!

Proof. Let P(n) = (n < 2n)

– Base case: P(1)=(1<21)=(1<2) => T.

– Inductive step: For n>0, prove P(n)P(n+1).
• Assuming n<2n, prove n+1 < 2n+1.
• Note n + 1 < 2n + 1 (by inductive hypothesis)

< 2n + 2n = 2 * 2n

< 2n+1

• So n + 1 < 2n+1, and we’re done.

Example 2:

5

2020-03-19
17/77

Steps in doing an inductive proof:
1) state the theorem, which is the proposition P(n)
2) prove that P(base case) is true
3) state the inductive hypothesis (substitute k for n)
4) state what must be proven (substitute k+1 for n)
5) state that you are beginning your proof of the

inductive step, and proceed to manipulate the
inductive hypothesis (which we assume is true) to
find a link between the inductive hypothesis and the
statement to be proven. Always state explicitly
where you are invoking the inductive hypothesis.

6) Always finish your proof with something like:
P(k+1) is true when P(k) is true, and therefore
P(n) is true for all natural numbers.

2020-03-19
18/77

Example 3: Prove that for every positive integer n, the sum of the first n positive integers is
n(n+1)/2. This is the classic example of an inductive proof.

Note that to begin the inductive step, we state the inductive hypothesis by writing out the
meaning of P(k), then we state what is to be proved based on that hypothesis, P(k+1). We
obtain P(k+1) by substituting k+1 for k in P(k). Writing out P(k+1) at this point will often show
you what is needed in the proof.

Theorem. The following proposition is true for all positive integers P(n): 1+2+3+....+n = n(n+1)/2

BASE CASE: P(1) asserts that 1 = 1(1+1)/2 = 1, which is true.

INDUCTIVE STEP:
Assume for some integer k, P(k): 1+2+3+...+k = k(k+1)/2
Show: P(k+1): 1+2+3+...+(k+1) = (k+1) ((k+1)+1)/2

Proof of the Inductive Step:
By the induction hypothesis, we already have a formula for the first k integers.
So, a formula for the first (k+1) integers may be found by simply adding (k+1)
to both sides of the induction hypothesis, and simplifying:

1+2+3+...+k+(k+1) = k(k+1)/2 + (k+1)
= (k(k+1) + 2(k+1)) / 2

= (k+1)(k+2)/2
= ((k+1) ((k+1)+1)) / 2

Thus P(k+1) is true when P(k) is true, and therefore P(n) is true for all natural numbers.

2020-03-19
19/77

Generalizing Induction
• Rule can also be used to prove nc P(n)

for a given constant cℤ, where maybe c0.
– In this circumstance, the base case is to prove

P(c) rather than P(0), and the inductive step is
to prove nc (P(n)P(n+1)).

• Induction can also be used to prove
nc P(an) for any arbitrary series {an}.

• Can reduce these to the form already
shown.

2020-03-19
20/77

Until now we have been using the so-called weak induction.
There is a variation called strong induction. Rather than
assuming that P(k) is true to prove that P(k+1) is true,

we assume that P(i) is true for all i where
(basis of induction) ≤ i ≤ k.

From this assumption, we prove P(k+1). It's stronger in the
sense that we are allowed to come to the same conclusion
while assuming more, but the assumption is a natural one
based on our understanding of weak induction. In fact, weak
induction and strong induction are logically equivalent.
That is, assuming either one is a valid rule of inference, we can
show that the other is.

Strong or Complete Induction:
BASE CASE: Prove P(base) is true
INDUCTION: Assume P(base), P(base+1)...P(k) are true, and

prove that P(k+1) is true.

More formal statement is on next slide

6

2020-03-19
21/77

Second Principle of Induction

• Characterized by another inference rule:
P(0)
n0: ( 0in, P(i))  P(n+1)
n0: P(n)

• The only difference between this and
the 1st principle is that:
– the inductive step here makes use of the

stronger hypothesis that P(i) is true for all
smaller numbers i <n+1, not just for i = n.

P is true in all previous cases

a.k.a. “Strong Induction”

2020-03-19
22/77

Example 4 - Second Principle

• Show that every n > 1 can be written as a product
 pi = p1p2…ps of some series of s prime numbers.
– Let P(n)=“n has that property”

• Base case: n=2, let s=1, p1=2.
• Inductive step: Let n2. Assume 2kn: P(k).

Consider n+1. If it’s prime, let s=1, p1=n+1.
Else n+1=ab, where 1an and 1bn.
Then a=p1p2…pt and b=q1q2…qu. Then we have
that n+1 = p1p2…pt q1q2…qu, a product of s=t+u
primes.

Thus, if k + 1 is composite, it can be written as the product of primes,
namely,

those primes in the factorization of a and
those in the factorization of b.

2020-03-19
23/77

• Prove that every amount of postage of 12
cents or more can be formed using just 4-cent
and 5-cent stamps. P(n)=“n can be…”

• Base case: 12=34), 13=24)+1(5),
14=1(4)+2(5), 15=3(5), so 12n15, P(n).

• Inductive step: Let n15, assume
12kn P(k). Note 12n3n, so P(n3) is
valid, and thus add a 4-cent stamp to get
postage for n+1.

Example 5 - Second Principle

2020-03-19
24/77

A jigsaw puzzle consists of a number of pieces. Two or more
pieces with matched boundaries can be put together to form a
"big" piece. To be more precise, we use the term block to
refer to either a single piece or a number of pieces with
matched boundaries that are put together to form a "big"
piece. Thus, we can simply say that blocks with matched
boundaries can be put together to form another block. Finally,
when all pieces are put together as one single block, the
jigsaw puzzle is solved. Putting 2 blocks together with
matched boundaries is called one move. We shall prove
(using strong induction) that for a jigsaw puzzle of n pieces, it
will always take n-1 moves to solve the puzzle.

BASE CASE: P(1) is true--for a puzzle with 1 piece, it does not
take any moves to solve it.

INDUCTIVE STEP:
Assume P(i) where 1≤ i ≤ k: for a puzzle with i pieces, it takes i-1

moves to solve the puzzle.
Show that for a puzzle with k+1 pieces, it takes k moves to solve

the puzzle.
… it continues

7

2020-03-19
25/77

Cont.

Proof of the Inductive Step:
Consider the puzzle with k+1 pieces. For the last move
that produces the solution to the puzzle, we have two
blocks: one with n1 pieces and the other with n2 pieces,
where n1 + n2 = k + 1. These two blocks will then be put
together to solve the puzzle. According to the induction
hypothesis, it took n1 - 1 moves to put together the one
block, and n2 – 1 moves to put together the other block.
Including the last move to unite the two blocks, the total
number of moves is equal to

[(n1 - 1) + (n2 - 1)] + 1 = (k + 1) - 1 = k
P(k+1) is true when P(i) is true, where i ≤ k, and therefore
P(n) is true for any puzzle size.

2020-03-19
26/77

Strong induction vs. non-strong induction

This one can also be phrased closer to previous pages format:

Prove that any postage ≥ 20 can be written with 5 & 6 cent stamps

One more example: A Comparison

• Determine which amounts of postage can
be written with 5 and 6 cent stamps

– Prove using both versions of induction

• Answer: any postage ≥ 20

2020-03-19
27/77

Proof by weak induction
• Show base case: P(20):

– 20 = 5 + 5 + 5 + 5
• Inductive hypothesis: Assume P(k) is true
• Inductive step: Show that P(k+1) is true

– If P(k) uses a 5 cent stamp, replace one stamp with a
6 cent stamp

– If P(k) does not use a 5 cent stamp, it must use only 6
cent stamps

• Since k > 18, there must be four 6 cent stamps
• Replace these with five 5 cent stamps to obtain k+1

2020-03-19
28/77

Proof by strong induction
• Show base cases: P(20), P(21), P(22), P(23), and P(24)

– 20 = 5 + 5 + 5 + 5
– 21 = 5 + 5 + 5 + 6
– 22 = 5 + 5 + 6 + 6
– 23 = 5 + 6 + 6 + 6
– 24 = 6 + 6 + 6 + 6

• Inductive hypothesis: Assume P(20), P(21), …, P(k) are
all true

• Inductive step: Show that P(k+1) is true
– We will obtain P(k+1) by adding a 5 cent stamp to P(k+1-5)
– Since we know P(k+1-5) = P(k-4) is true, our proof is complete

8

2020-03-19
29/77

• The validity of mathematical induction
follows from the Well-Ordering Property
(WOP), which is

• a fundamental axiom of number theory.
• WOP states that every nonempty set of

non-negative integers has a least element.
• This axiom can be used directly in proofs of

theorems relating to sets of integers.

The Well-Ordering Property

it continues …

I stopped here last tim
e

2020-03-19
30/77

A standard way to use Well Ordering to prove that some
property, P(n) holds for every nonnegative integer n

28/75

2020-03-19
31/77

The Well-Ordering Property
• Well-ordering property Axiom says that:

• Every non-empty set of non-negative integers has
a minimal (smallest, least) element.
–  Sℕ : mS : nS : mn

• and thus, WOP proves that the Induction is valid
because

• This implies that {n|P(n)} (if non-empty) has a
min. element m, but then the assumption that
P(m−1)  P((m−1)+1) would be contradicted.

(check also page 278 in 6th edition and 314 in 7th one of the book)

2020-03-19
32/77

or, in another way
• Why is mathematical induction a valid proof technique?
• The reason comes from the well ordering property for the set of

positive integers.
• Suppose we know that P(1) is true and that the proposition P(k)

-> P(k + 1) is true for all positive integers k. To show that P(n)
must be true for all positive integers n, assume that there is at
least one positive integer for which P(n) is false. Then the
set S of positive integers for which P(n) is false is nonempty.

• Thus, by the well-ordering property, S has a least element,
which will be denoted by m. We know that m cannot be 1,
because P(1) is true. Because m is positive and greater than 1 ,
m - 1 is a positive integer. Furthermore, because m - 1 is less
than m, it is not in S, so P(m - 1) must be true. Because the
conditional statement P(m - 1) -> P(m) is also true, it must be
the case that P(m) is true. This contradicts the choice of m.
Hence, P(n) must be true for every positive integer n.

9

2020-03-19
33/77

and, in the plainest English the last
statements go as:

You assume that
• the set of integers S for which P(n) is false is

nonempty. By WOP, there would be a smallest
positive integer k for which P(k) is false.

• You then obtain a contradiction, showing that S
must be empty.

• The contradiction is derived from the fact that
for positive integer j with j < k, P(j) must be true
due to the way k was chosen.

2020-03-19
34/77

Example 6 Proof by WOP now

• Theorem: Every natural number n can be written as a
product of primes.

• Proof: Let S be the set of natural numbers that cannot
be written as a product of primes. Then by the WOP,
S has a smallest element, which we will call n. n must
not be a prime, because if it was, it could be written as
a product of one prime, itself.

• Thus n = rs for some numbers such that 1 < r, s < n.
Since both r and s are smaller than n, both can be
written as products of primes. But that means that n is
the product of primes, which is a contradiction. Thus
the set S must be empty.

• In other words, there is no set of natural numbers
that cannot be written as product of primes

2020-03-19
35/77

Example 7 Proof by both Induction and WOP

• Theorem: Every positive integer n is either bigger or equal 1, i.e., n ≥ 1

• Proof by induction:
– Basis step: P(1) holds because 1 ≥ 1
– Assuming P(n) is true, i.e., n ≥ 1, add 1 to both side n+1 ≥ 2 > 1

• which is P(n+1). That is, P(n+1) is true, whenever P(n) is true.

• Proof by WOP:
– Suppose there does exist a positive integer less then 1.
– By WOP there must exist a least positive integer a such that

0 < a < 1

– Multiplying both sides by positive integer a

0 < a2 < a

– Therefore, a2 is a positive integer less than a which is also less than 1.
This contradicts a‘s property of being the least positive integer less than 1.
Hence, there exists no positive integer less than 1.

2020-03-19
36/77

Recursion

10

2020-03-19
37/77

• In induction, we prove all members of an infinite set satisfy
some predicate P by:
– proving the truth of the predicate for larger members in terms of that of

smaller members.
Induction proves some CLOSED FORM EXPRESSION.

• In recursive definitions, we similarly define a function, a
predicate, a set, or a more complex structure over an infinite
domain (universe of discourse) by:
– defining the function, predicate value, set

membership, or structure of larger elements in
terms of those of smaller ones.

• In structural induction, we inductively prove properties of
recursively-defined objects in a way that parallels the objects’
own recursive definitions.

4.3 & 4.4: Recursive Definitions

2020-03-19
38/77

Recursion

• Recursion is the general term for the practice of
defining an object in terms of itself

– or of part of itself

• An inductive proof establishes the truth of
P(n+1) recursively in terms of P(n).

• There are also recursive algorithms, definitions,
functions, sequences, sets, and other structures.

2020-03-19
39/77

What is a meaning of defining in terms of itself?

For example, let f(x) = x!

We can define f(x) as

f(x) = x * f(x-1), or one can also use
f(x+1) = (x+1) * f(x)

2020-03-19
40/77

… more recursion examples
– Find f(1), f(2), f(3), and f(4), where f(0) = 1
a) Let f(n+1) = f(n) + 2

• f(1) = f(0) + 2 = 1 + 2 = 3
• f(2) = f(1) + 2 = 3 + 2 = 5
• f(3) = f(2) + 2 = 5 + 2 = 7
• f(4) = f(3) + 2 = 7 + 2 = 9

b) Let f(n+1) = 3f(n)
• f(1) = 3 * f(0) = 3*1 = 3
• f(2) = 3 * f(1) = 3*3 = 9
• f(3) = 3 * f(2) = 3*9 = 27
• f(4) = 3 * f(3) = 3*27 = 81

And, the closed form for this series is
an = 2n + 1, n = 0, 1, 2, …

And, the closed form for this series is
an = 3n , n = 0, 1, 2, …

11

2020-03-19
41/77

… more recursion examples
– Find f(1), f(2), f(3), and f(4),

where f(0) = 1
c) Let f(n+1) = 2f(n)

• f(1) = 2f(0) = 21 = 2
• f(2) = 2f(1) = 22 = 4
• f(3) = 2f(2) = 24 = 16
• f(4) = 2f(3) = 216 = 65536

d) Let f(n+1) = f(n)2 + f(n) + 1
• f(1) = f(0)2 + f(0) + 1 = 12 +

1 + 1 = 3
• f(2) = f(1)2 + f(1) + 1 = 32 +

3 + 1 = 13
• f(3) = f(2)2 + f(2) + 1 = 132

+ 13 + 1 = 183
• f(4) = f(3)2 + f(3) + 1 = 1832

+ 183 + 1 = 33673

… and, the closed form for this series is
?

… and, the closed form for this series is
?

2020-03-19
42/77

Recursively Defined Functions

• Simplest case:
One way to define a function f: ℕS (for
any set S) or series an = f(n) is to:
– Define f(0) (f(1),f(2), …, f(n-1)).
– For n>0, define f(n) in terms of f(0),…,f(n−1).

• Ex. Define the series an :≡ 2n recursively:
– Let a0 :≡ 1.
– For n > 0, let an :≡ 2an-1.

2020-03-19
43/77

Another Example

9 21 45 93

This is a PURE
CLASSIC

RECURSION

• Suppose we define f(n) for all nℕ
recursively by:
– Let f(0)=3
– For all nℕ, let f(n+1) = 2f(n)+3

• What are the values of the following f-s ?
– f(1)= f(2)= f(3)= f(4)=

2020-03-19
44/77

Recursive Definition of Factorial

• Give an inductive (recursive) definition of
the factorial function,

F(n) :≡ n! :≡ ∏1≤i≤n i = 12…n.
– Base case: F(0) :≡ 1
– Recursive part: F(n) :≡ n  F(n−1).

• F(1)=1
• F(2)=2
• F(3)=6
• F(4)=24 …

12

2020-03-19
45/77

More Easy Examples

• Write down recursive definitions for:

– aꞏn (a real, n natural) using only addition
– an (a real, n natural) using only multiplication
– ∑0≤i≤n ai (for an arbitrary series of numbers

{ai})
– ∏0≤i≤n ai (for an arbitrary series of numbers

{ai})

2020-03-19
46/77

Fibonacci sequence is a good old, and
often useful today, series

• Definition of the Fibonacci sequence

– Non-recursive, or closed form:

– Recursive: F(n) = F(n-1) + F(n-2)
or: F(n+1) = F(n) + F(n-1)

• Must always specify base case(s)!
– F(1) = 0, F(2) = 1
– Note that some will use F(0) = 0, F(1) = 1

   1 5 1 5
()

5 2

n n

n
F n

  




It’s over with easy stuff!!! From now on it’s getting much tougher.

2020-03-19
47/77

3

The Fibonacci Series
• The Fibonacci series fn≥0 is a famous

series defined by:
f0 :≡ 0, f1 :≡ 1, fn≥2 :≡ fn−1 + fn−2

Leonardo Fibonacci
1170-1250

0
1

1

2

5 8

13

0+1=1, 1+1=2, 1+2=3, 2+3=5, 3+5=8 or simply,
0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233, 377, 610, 987, …, infinity.

+

+

+

+

+

+

21+ 2020-03-19
48/77

Inductive Proof about Fib. Series – Upper Bound

• Theorem. fn < 2n.

Proof. By induction.
Base cases: f0 = 0 < 20 = 1

f1 = 1 < 21 = 2

• Inductive step: Use 2nd principle of induction
(strong induction). Assume k<n, fk < 2k.

• Then fn = fn−1 + fn−2 and obviously

fn < 2n−1 + 2n−2 < 2n−1 + 2n−1 = 2n. ■

Note use of
base cases of
recursive def’n.

Implicitly for all nℕ

Run Fibonacci_Bounds.m now

13

2020-03-19
49/77

A lower bound on Fibonacci series
• Theorem. For all integers n ≥ 3, fn > αn−2, where

α = (1+51/2)/2 ≈ 1.61803.

Proof. (Using strong induction.)
– Let P(n) = (fn > αn−2).
– Base cases:

For n=3, α3−2 = α ≈ 1.61803 < 2 = f3 .
For n=4, α4−2 = α2 = (1+2ꞏ51/2+5)/4 = (3+51/2)/2 ≈ 2.61803 < 3
= f4.

– Inductive step:
For k≥4, assume P(j) for 3≤j≤k, prove P(k+1). Note α2 = α+1.
α(k+1)−2 = αk−1 = α2 αk−3 = (α+1)αk−3 = αk−2 + αk−3. By inductive
hypothesis, fk−1 > αk−3 and fk > αk−2. So,
α(k+1)−2 = αk−2 + αk−3 < fk + fk−1 = fk+1. Thus P(k+1). ■

We’ll show soon
where is this
number coming
from

Vojo, show GOLDEN
RATIO SLIDES NOW!!!

2020-03-19
50/77SKIPING LAME THEOREM’s PROOF!

Lamé’s Theorem

• Thm. a,bℤ+, a ≥b,
the number of steps in Euclid’s
algorithm to find gcd(a,b) is
≤ 5k,
where k = log10 b+1 is the
number of decimal digits in b.
– Thus, Euclid’s algorithm is linear-

time in the number of digits in b.
• Proof:

– Uses the Fibonacci sequence!
– See next 2 slides.

Gabriel Lamé
1795-1870

2020-03-19
51/77

Proof of Lamé’s Theorem

• Consider the sequence of division-
algorithm equations used in Euclid’s
algorithm:
– r0 = r1q1 + r2 with 0 ≤ r2 < r1

– r1 = r2q2 + r3 with 0 ≤ r3 < r2

– …
– rn−2 = rn−1qn−1 + rn with 0 ≤ rn < rn−1

– rn−1 = rnqn + rn+1 with rn+1 = 0 (terminate)
• The number of divisions (iterations) is n.

Where a = r0,
b = r1, and
gcd(a,b)=rn.

Continued on next slide…SKIPING LAME THEOREM’s PROOF!

2020-03-19
52/77

Lamé Proof, continued
• Since r0 ≥ r1 > r2 > … > rn,

each quotient qi ≡ ri−1/ri ≥ 1, i=1, ..., n-1.
• Since rn−1 = rnqn and rn−1 > rn, qn ≥ 2.
• So we have the following relations between r and f:

– rn ≥ 1 = f2
– rn−1 ≥ 2rn ≥ 2 = f3
– rn−2 ≥ rn−1 + rn ≥ f2 + f3 = f4
– …
– r2 ≥ r3 + r4 ≥ fn−1 + fn−2 = fn
– b = r1 ≥ r2 + r3 ≥ fn + fn−1 = fn+1.

• Thus, if n>2 divisions are used, then b ≥ fn+1 > αn−1.
– Thus, log10 b > log10(αn−1) = (n−1)log10 α ≈ (n−1)0.208 > (n−1)/5.
– If b has k decimal digits, then log10 b < k, so n−1 < 5k, so n ≤ 5k.

SKIPING LAME THEOREM’s PROOF!

14

2020-03-19
53/77

Recursively Defined Sets
• An infinite set S may be defined

recursively, by giving:
i) A small finite set of base elements of S.
ii) A rule for constructing new elements of S from

previously-established elements.
iii) Implicitly, S has no other elements but these.

• Example. Let 3S, and let x+yS if x,yS.
What is S?

What about this? 3+3=6, 3+6=9, 6+6=12, 3+9=12, …

2020-03-19
54/77

The Set of All Strings
• Def. Given an alphabet Σ, the set Σ* of all

strings over Σ can be recursively defined
by:

λ  Σ* (λ :≡ “the empty string”)
• w  Σ*  x  Σ → wx  Σ*

• Exercise: Prove that this definition is
equivalent to our old one:


N

 
n

n:

Note that wx is a string not a product

2020-03-19
55/77

Other Easy String Examples
• Give recursive definitions for:
• The concatenation of strings w1ꞏw2.
• The length (w) of a string w.
• Well-formed formulae of propositional logic

involving T, F, propositional variables, and
operators in {¬, , , →, ↔}.

• Well-formed arithmetic formulae involving
variables, numerals, and operations in {+, −, *,
↑}.

2020-03-19
56/77

Rooted Trees
• Trees will be covered in more depth in chapter

9.
– Briefly, a tree is a graph in which there is exactly

one undirected path between each pair of nodes.
– An undirected graph can be represented as a set of

unordered pairs (called edges) of objects called
nodes.

• Definition of the set of rooted trees:
i) Any single node r is a rooted tree.
ii) If T1, …, Tn are disjoint rooted trees with respective

roots r1, …, rn, and r is a node not in any of the Ti’s,
then another rooted tree is
{{r,r1},…,{r,rn}}T1…Tn.

iii) That is all.

We will n
ot go into Rooted

Trees in this class! Here is

the end of Induction and

Recursion section

15

2020-03-19
57/77

Illustrating Rooted Tree Def’n.

• How rooted trees can be combined to form
a new rooted tree…

T1
T1

r1
T2
T2

r2
TnTn
rn

r

…
Draw some examples…

2020-03-19
58/77

Extended Binary Trees
• A special case of rooted trees.
• Def. Extended binary trees (EBT):

i) The empty set  is an EBT.
ii) If T1,T2 are disjoint EBTs,

then e1e2 T1T2 is an EBT,
where
e1 =  if T1 = , and
e1 = {(r,r1)} if T1≠ and
has root r1, and
similarly for e2.

iii) That is all.

Draw some examples…

2020-03-19
59/77

Full Binary Trees
• A special case of extended binary trees.
• Def. Recursive definition of full binary trees (FBT):

– i) A single node r is a FBT.
• Note this is different from the EBT base case.

– ii) If T1,T2 are disjoint FBTs,
then e1e2T1T2,
where
e1 =  if T1 = , and
e1 = {(r,r1)} if T1≠ and
has root r1, and
similarly for e2.
• Note this is the same as the EBT recursive case!

– Can simplify it to “If T1,T2 are disjoint FBTs with roots r1 and r2, then {(r,
r1),(r,r2)} T1T2 is an FBT.”

– i) That is all.

Draw some examples…
2020-03-19

60/77

Structural Induction

• Proving something about a recursively
defined object using an inductive proof
whose structure mirrors the object’s
definition.

16

2020-03-19
61/77

Example
• Thm. Let 3S, and let x+yS if x,yS, and that is all.

Let A = {nℤ+| (3|n)}.
Than A=S.

Proof. We show that AS and SA.
– To show AS, show [nℤ+  (3|n)]→ nS.

• Inductive proof. Let P(n) :≡ nS. Induction over positive
multiples of 3. Base case. n=3, thus 3S by def’n. of S.
Inductive step. Given P(n), prove P(n+3). By inductive hyp., nS,
and 3S, so by def’n of S, n+3S.

– To show SA: let nS, show nA.
• Structural inductive proof. Let P(n):≡nA.

Base case. 3S . Since 3|3, 3A.
Recursive step. x,y S, n=x+y S and x,y A . Since 3|x and 3|y,
we have 3|(x+y), thus x+y = n  A.

2020-03-19
62/77

• stop

2020-03-19
63/77

Recursive Algorithms (§4.4)

• Recursive definitions can be used to
describe algorithms as well as functions
and sets.

• Ex. A procedure to compute an.
• procedure power(a≠0: real, nℕ)
• if n = 0 then return 1

else return a · power(a, n−1)

2020-03-19
64/77

Efficiency of Recursive Algorithms

• The time complexity of a recursive
algorithm may depend critically on the
number of recursive calls it makes.

• Ex. Modular exponentiation to a power n
can take log(n) time if done right, but linear
time if done slightly differently.
– Task: Compute bn mod m, where

m≥2, n≥0, and 1≤b<m.

17

2020-03-19
65/77

Modular Exponentiation Alg. #1
• Uses the fact that bn = bꞏbn−1 and that

xꞏy mod m = xꞏ(y mod m) mod m.
(Prove the latter theorem at home.)

• procedure mpower(b≥1,n≥0,m>b ℕ)
• {Returns bn mod m.}
if n=0

then return 1
else return (b∙mpower(b,n−1,m)) mod m

• Note this algorithm takes Θ(n) steps!
2020-03-19

66/77

Modular Exponentiation Alg. #2

• Uses the fact that b2k = bkꞏ2 = (bk)2.

• procedure mpower(b,n,m) {same signature}
• if n=0 then return 1
else if 2|n

then return mpower(b,n/2,m)2 mod m
else return (mpower(b,n−1,m)·b) mod m

• What is its time complexity? Θ(log n) steps

2020-03-19
67/77

A Slight Variation

• Nearly identical but takes Θ(n) time
instead!

• procedure mpower(b,n,m) {same signature}
• if n=0 then return 1
else if 2|n

then return (mpower(b,n/2,m)·
mpower(b,n/2,m)) mod m

else return (mpower(b,n−1,m)·b) mod m

The number of recursive calls made is critical!

2020-03-19
68/77

Recursive Euclid’s Algorithm
• procedure gcd(a,bN)
if a = 0

then return b
else return gcd(b mod a, a)

• Note recursive algorithms are often
simpler to code than iterative ones…

• However, they can consume more stack
space, if your compiler is not smart
enough.

18

2020-03-19
69/77

Recursive Linear Search
• Note there is no real advantage to using

recursion here, rather than just looping for loc :=
i to j…

• procedure search(a: series; i, j: integer;
x: item to be found)

• {Find x in series a at a location ≥i and <j}

if ai = x
then return i {At the right item? Return it!}

if i = j
then return 0 {No locations in range? Failure!}

return search(i+1, j, x) {Try rest of range}

2020-03-19
70/77

Recursive Binary Search
• procedure binarySearch(a, x, i, j) {same
sig}
{Find location of x in a, ≥i and <j}
m := (i + j)/2 {Go to halfway point.}
if x = am

then return m {Did we luck out?}

if x<am  i<m {If it’s to the left,}
then return binarySearch(a,x,i,m−1) {Check

that ½}
else if am<x  m<j {If it’s to right,}

then return binarySearch(a,x,m+1,j) {Check
that ½}
else

return 0 {No more items, failure.}

2020-03-19
71/77

Recursive Fibonacci Algorithm
• procedure fibonacci(n  N)
if n=0

then return 0
if n=1

then return 1
return fibonacci(n−1)+fibonacci(n−2)

• Is this an efficient algorithm?
– Is it polynomial-time in n?

• How many additions are performed?

2020-03-19
72/77

Analysis of Fibonacci Procedure
• Thm. The preceding procedure for fibonacci(n)

performs fn+1−1 addition operations.

Proof. By strong structural induction over n,
based on the procedure’s own recursive
definition.

• Base cases: fibonacci(0) performs 0 additions, and f0+1−1 =
f1 − 1 = 1 − 1 = 0. Likewise, fibonacci(1) performs 0
additions, and f1+1−1 = f2−1 = 1−1 = 0.

• Inductive step: For n>1, by strong inductive hypothesis,
fibonacci(n−1) and fibonacci(n−2) do fn−1 and fn−1−1
additions respectively, and fibonacci(n) adds 1 more, for a
total of fn−1+ fn−1−1+1 = fn+fn−1+1 = fn+1+1. ■

19

2020-03-19
73/77

A more efficient algorithm
• procedure findFib(a,b,m,n)

{Given a=fm−1, b=fm, and m≤n, return fn}
if m=n

then return b
return findFib(b, a+b, m+1, n)

• procedure fastFib(n) {Find fn in Θ(n) steps.}
if n=0

then return 0
return findFib(0,1,1,n)

2020-03-19
74/77

Recursive Merge Sort
• procedure sort(L = 1,…, n)
if n>1

then {
m := n/2 {this is rough ½-way point}

L := merge(sort(1,…, m),
sort(m+1,…, n))

}
return L

• The merge (next slide) takes Θ(n) steps,
and merge-sort takes Θ(n log n).

2020-03-19
75/77

Recursive Merge Method
• procedure merge(A,B: sorted lists)
{Given two sorted lists A=(a1,…,a|A|),
B=(b1,…,b|B|), return a sorted list of
all.}

• if A = ()
then return B {If A is empty, it’s B.}

if B = ()
then return A {If B is empty, it’s A.}

if a1<b1
then return (a1, merge((a2,…a|A|), B))
else return (b1, merge(A,(b2,…,b|B|)))

2020-03-19
76/77

Merge Routine
• procedure merge(A, B: sorted lists)

L = empty list
i:=0, j:=0, k:=0
while i<|A|  j<|B| {|A| is length of A}

if i=|A| then {
Lk := Bj;
j := j + 1

} else if j=|B| then {
Lk := Ai;
i := i + 1

} else if Ai < Bj then {
Lk := Ai;
i := i + 1

• } else {
• Lk := Bj;
• j := j + 1
• }

k := k+1
return L Takes Θ(|A|+|B|) time

20

2020-03-19
77/77

References

• Rosen
Discrete Mathematics and its Applications, 6e
Mc GrawHill, 2007

