

Vojislav Kecman

Ch 4 in $6^{\text {th }}$ edition
Ch 5 in $7^{\text {th }}$ edition

2020-03-19
\qquad

recur

happen again; repeat in one's mind
Synonyms for recur
persist reappear

iterate	recrudesce
reiterate	repeat
return	revert

be remembered
come again
come back
haunt thoughts run through one's mind come and go crop up again return to mind
\square

induce

2020-03-19
verb cause to happen; encourage

Synonyms for induce

activate	bulldoze	steamroll
breed	cajole	sway
bring about	draw	sweet-talk
cause	effect	wheedle
coax	get	argue into
convince	goose	bring around
engender	impel	draw in
generate	incite	get up
lead to	influence	give rise to
motivate	instigate	prevail upon
persuade	make	sell one on
produce	move	set in motion
promote	occasion	suck in
prompt	press	talk into
urge	procure	twist one's arm
abet	soft-soap	win over
actuate	squeeze	

activate

Induction and recursion

are related concepts.
Induction is a proof technique,
recursion is a related programming concept.
Induction proof: assume it is true for n, and show it for $n+1$ using the assumption.

Recursion: assume you know how to solve the problem when the input size is n, and design a solution for the case $\boldsymbol{n + 1}$ using the solution for \boldsymbol{n}.

Note that we could have used numbering as $(n-1)$ and n, instead of n and $(n+1)!!!$ 2020-03-19

Topics

- Mathematical induction

- Well ordered property
- Second principle of induction
- Recursive definition
- Recursive algorithms

It may be good at this point to refresh yourself on predicates, predicate logic a.k.a. propositional functions. To do this go to my Lecture 2, handouts 02 Propositional Logic.pdf and start reading from page 59, (you may wish to skip 60-63), and continue by slide 64 . Focus on slide 66 ©
2020-03-19

- Assume that the rungs of the ladder are numbered with the positive integers (1,2,3...). Assume a specific property that a number might have now. Instead of "reaching an arbitrarily high rung", we can talk about an arbitrary positive integer having that property P.
- We will use the shorthand $P(n)$ to denote the positive integer n having property P. How can we use the ladderclimbing technique to prove that $P(n)$ is true for all positive n ?
- The two assertions we need to prove are:
- 1) $P(1)$ is true
- 2) for any positive k, if $P(k)$ is true, then $P(k+1)$ is true
- Assertion 1 means we must show the property is true for 1 ; assertion 2 means that if any number has property P then so does the next number. If we can prove both of these statements, then $P(n)$ holds for all positive integers, (which is same as climbing to an arbitrary rung of the ladder).
- Important math task is to discover and characterize regular patterns or sequences.
- The main mathematical tool to prove statements about sequences is induction.
- Induction is also a very important tool in computer science because most programs are repetition of a sequence of statements.

- Example on how induction works:

- Imagine climbing an infinitely high ladder. How do you know whether you will be able to reach an arbitrarily high rung?
- Suppose you make the following two assertions about your climbing:
- 1) I can definitely reach the first rung.
- 2) Once getting to any rung, I can always climb to the next one up.
- If both statements are true, then by statement 1 you can get to the first one, and by statement 2 , you can get to the second. By statement 2 again, you can get to the third, and fourth, etc.
- Therefore, you can climb as high as you wish. Note: both of these assertions are necessary for you to get anywhere on the ladder.
- If only statement 1 is true, you have no guarantee of getting beyond the first rung.
2020-03-1㪸 only statement 2 is true, you may never be able to get started. ${ }^{6 / 77}$
- The Principle of Mathematical Induction can be used as a proof method on statements that have a particular form, and it can be stated as follows:
- A proof by mathematical induction that a proposition $\mathrm{P}(\mathrm{n})$ is true for every positive integer n consists of two steps:
- BASIS CASE: Show that the proposition $P(1)$ is true.
- INDUCTIVE STEP: Assume that $P(k)$ is true for an arbitrarily chosen positive integer k, and show that under that assumption, $\mathrm{P}(\mathrm{k}+1)$ must be true.
- From these two steps we conclude (by the principle of mathematical induction) that for all positive integers $\mathrm{n}, \mathrm{P}(\mathrm{n})$ is true.
- Note: we don't prove that $\mathbf{P}(\mathbf{k})$ is true (except for $k=1$). Instead, we show that if $\mathrm{P}(\mathrm{k})$ is true, then $\mathrm{P}(\mathrm{k}+1)$ must also be true. That's all that is necessary according to the Principle of Mathematical Induction. The assumption that $P(k)$ is true is called the induction hypothesis.
- Understand that $P(n)$ and $P(k)$ are not numbers; they are the

2020-03-19 propositions that are true or false.

4.1 Mathematical Induction

- A powerful, rigorous technique for proving that a predicate $P(n)$ is true for every natural number n, no matter how large.
- Essentially a "domino effect" principle.
- Based on a predicate-logic inference rule:

Validity of Induction

- Proof that $\forall k \geq 0 P(k)$ is a valid consequent:

Given any $k \geq 0$, the $2^{\text {nd }}$ antecedent
$\forall n \geq 0(P(n) \rightarrow P(n+1))$ trivially implies that $\forall n \geq 0(n<k) \rightarrow(P(n) \rightarrow P(n+1))$, i.e., that $(P(0) \rightarrow P(1)) \wedge$ $(P(1) \rightarrow P(2)) \wedge \ldots \wedge(P(k-1) \rightarrow P(k))$. Repeatedly applying the hypothetical syllogism rule to adjacent implications in this list $k-1$ times then gives us $P(0) \rightarrow P(k)$; which together with $P(0)$ (antecedent \#1) and modus ponens gives us $P(k)$. Thus $\forall k \geq 0 P(k)$.

Modus ponens is a very common way to make conclusions in
classical logic, i.e., it's a rule of inference, and it goes as follows:
If A, then B.
A.
Therefore, B.
See next slide

The "Domino Effect"

- Premise \#1: Domino \#1 falls.
- Premise \#2: For every $n \in \mathbb{N}$, if domino \#n falls, then so does domino \#n+1.
Conclusion: All of the dominoes fall down!

Note:

 this works even if there are infinitely many dominoes! $10 / 77$
Modus ponens or MP is an abbreviation of

- modus ponendo ponens
which is an old Latin saying standing for "the way that affirms by affirming"

It is not a logical law,
it is, rather one of the accepted mechanisms for the construction of proofs

Example 1:
Let P be the proposition that the sum of the first n odd numbers is n^{2}; that is,

$$
P(n): 1+3+5+\ldots+(2 n-1)=n^{2}
$$

Proof

(The nth odd number is $2 n-1$, and the next odd number is $2 n+1$). Observe that $P(n)$ is true for $n=1$, that is,

$$
P(1): 1=1^{2}
$$

Assuming $P(n)$ is true, we add $2 n+1$ to both sides of $P(n)$, obtaining

$$
1+3+5+\ldots+(2 n-1)+(2 n+1)=n^{2}+(2 n+1)=(n+1)^{2}
$$

which is $P(n+1)$. That is, $P(n+1)$ is true whenever $P(n)$ is true. By the principle of mathematical induction, P is true for all n.

A little more formally, same proof goes as follows

Induction Example 1 - Proof by $1^{\text {st }}$ principle
Prove that the sum of the first n odd positive integers is n^{2}. That is, prove

$$
\forall n \geq 1: \underbrace{\sum_{i=1}^{n}(2 i-1)=n^{2}}_{P(n)}
$$

Proof by induction.

- Base case: Let $n=1$. The sum of the first 1 odd positive integer is 1 which equals 1^{2}. - Inductive step: Prove $\forall n \geq 1$: $P(n) \rightarrow P(n+1)$.
- Let $n \geq 1$, assume $P(n)$, and prove $P(n+1)$.

Example 2:

- Theorem. $\forall n>0, n<2^{n}$. Prove it!

Proof. Let $P(n)=\left(n<2^{n}\right)$

- Base case: $P(1)=\left(1<2^{1}\right)=(1<2)=>T$.
- Inductive step: For $n>0$, prove $P(n) \rightarrow P(n+1)$.
- Assuming $n<2^{n}$, prove $n+1<2^{n+1}$.
- Note $n+1<2^{n}+1$ (by inductive hypothesis) $<2^{n}+2^{n}=2^{*} 2^{n}$ $<2^{n+1}$
- So $n+1<2^{n+1}$, and we're done.

$$
[\mathrm{P}(1) \wedge \forall k(\mathrm{P}(k) \rightarrow \mathrm{P}(k+1))] \rightarrow \forall n \mathrm{P}(n)
$$

2020-03-19

Steps in doing an inductive proof:

1) state the theorem, which is the proposition $P(n)$
2) prove that P (base case) is true
3) state the inductive hypothesis (substitute k for n)
4) state what must be proven (substitute $k+1$ for n)
5) state that you are beginning your proof of the inductive step, and proceed to manipulate the inductive hypothesis (which we assume is true) to find a link between the inductive hypothesis and the statement to be proven. Always state explicitly where you are invoking the inductive hypothesis.
6) Always finish your proof with something like: $P(k+1)$ is true when $P(k)$ is true, and therefore $P(n)$ is true for all natural numbers.

2020-03-19

Generalizing Induction

- Rule can also be used to prove $\forall n \geq c P(n)$ for a given constant $c \in Z$, where maybe $c \neq 0$.
- In this circumstance, the base case is to prove $P(c)$ rather than $P(0)$, and the inductive step is to prove $\forall n \geq c(P(n) \rightarrow P(n+1))$.
- Induction can also be used to prove $\forall n \geq C P\left(a_{n}\right)$ for any arbitrary series $\left\{a_{n}\right\}$.
- Can reduce these to the form already shown.

Example 3: Prove that for every positive integer n, the sum of the first n positive integers is $n(n+1) / 2$. This is the classic example of an inductive proof
Note that to begin the inductive step, we state the inductive hypothesis by writing out the meaning of $P(k)$, then we state what is to be proved based on that hypothesis, $P(k+1)$. We obtain $P(k+1)$ by substituting $k+1$ for k in $P(k)$. Writing out $P(k+1)$ at this point will often show you what is needed in the proof
Theorem. The following proposition is true for all positive integers $\quad P(n): 1+2+3+\ldots+n=n(n+1) / 2$
BASE CASE: $P(1)$ asserts that $1=1(1+1) / 2=1$, which is true.
INDUCTIVE STEP
Assume for some integer $k, P(k): 1+2+3+\ldots+k=k(k+1) / 2$
Show: $P(k+1): 1+2+3+\ldots+(k+1)=(k+1)((k+1)+1) / 2$
Proof of the Inductive Step:
By the induction hypothesis, we already have a formula for the first k integers
to both sides of the induction hypothesis, and simplifying
$1+2+3+\ldots+k+(k+1)$
$=k(k+1) / 2+(k+1)$
$=(k(k+1)+2(k+1)) / 2$
$=(k+1)(k+2) / 2$
$=((k+1)((k+1)+1)) / 2$
Thus $P(k+1)$ is true when $P(k)$ is true, and therefore $P(n)$ is true for all natural numbers 2020-03-19

Until now we have been using the so-called weak induction
There is a variation called strong induction. Rather than assuming that $P(k)$ is true to prove that $P(k+1)$ is true,
we assume that $P(i)$ is true for all i where (basis of induction) $\leq i \leq k$.
From this assumption, we prove $P(k+1)$. It's stronger in the sense that we are allowed to come to the same conclusion while assuming more, but the assumption is a natural one based on our understanding of weak induction. In fact, weak induction and strong induction are logically equivalent
That is, assuming either one is a valid rule of inference, we can show that the other is.
Strong or Complete Induction:
BASE CASE: Prove P (base) is true
INDUCTION: Assume $P($ base $), P($ base +1$) \ldots P(k)$ are true, and prove that $P(k+1)$ is true.

More formal statement is on next slide
2020-03-19

Second Principle of Induction

a.k.a. "Strong Induction"

- Characterized by another inference rule:
$P(0) \quad P$ is true in al/ previous cases

$$
\frac{\forall n \geq 0:(\forall 0 \leq i \leq n, P(i))}{\therefore \forall n \geq 0: P(n)} \rightarrow P(n+1)
$$

- The only difference between this and the 1st principle is that:
- the inductive step here makes use of the stronger hypothesis that $P(i)$ is true for all smaller numbers $i<n+1$, not just for $i=n$.

Example 5 - Second Principle

- Prove that every amount of postage of 12 cents or more can be formed using just 4-cent and 5 -cent stamps. $P(n)=" n$ can be..."
- Base case: 12=3(4), 13=2(4)+1(5), 14=1(4)+2(5), 15=3(5), so $\forall 12 \leq n \leq 15, P(n)$.
- Inductive step: Let $n \geq 15$, assume
$\forall 12 \leq k \leq n P(k)$. Note $12 \leq n-3 \leq n$, so $P(n-3)$ is valid, and thus add a 4-cent stamp to get postage for $n+1$.

Example 4 - Second Principle

- Show that every $n>1$ can be written as a product $\Pi p_{i}=p_{1} p_{2} \ldots p_{s}$ of some series of s prime numbers. - Let $P(n)=" n$ has that property"
- Base case: $n=2$, let $s=1, p_{1}=2$.
- Inductive step: Let $n \geq 2$. Assume $\forall 2 \leq k \leq n$: $P(k)$. Consider $n+1$. If it's prime, let $s=1, p_{1}=n+1$. Else $n+1=a b$, where $1<a \leq n$ and $1<b \leq n$. Then $a=p_{1} p_{2} \ldots p_{t}$ and $b=q_{1} q_{2} \ldots q_{u}$. Then we have that $n+1=p_{1} p_{2} \ldots p_{t} q_{1} q_{2} \ldots q_{u}$, a product of $s=t+u$ primes.

Thus, if $\boldsymbol{k}+1$ is composite, it can be written as the product of primes, namely,
those primes in the factorization of a and
2020-03-19
those in the factorization of b.

A jigsaw puzzle consists of a number of pieces. Two or more pieces with matched boundaries can be put together to form a "big" piece. To be more precise, we use the term block to refer to either a single piece or a number of pieces with matched boundaries that are put together to form a "big" piece. Thus, we can simply say that blocks with matched boundaries can be put together to form another block. Finally, when all pieces are put together as one single block, the jigsaw puzzle is solved. Putting 2 blocks together with
matched boundaries is called one move. We shall prove
(using strong induction) that for a jigsaw puzzle of n pieces, it
will always take $\mathrm{n}-1$ moves to solve the puzzle.
BASE CASE: $\mathrm{P}(1)$ is true--for a puzzle with 1 piece, it does not take any moves to solve it.

INDUCTIVE STEP:

Assume $\mathrm{P}(\mathrm{i})$ where $1 \leq \mathrm{i} \leq \mathrm{k}$: for a puzzle with i pieces, it takes $\mathrm{i}-1$ moves to solve the puzzle.
Show that for a puzzle with $k+1$ pieces, it takes k moves to solve the puzzle
2020-03-19

Cont.

Proof of the Inductive Step:
Consider the puzzle with $\mathrm{k}+1$ pieces. For the last move that produces the solution to the puzzle, we have two blocks: one with n_{1} pieces and the other with n_{2} pieces, where $n_{1}+n_{2}=k+1$. These two blocks will then be put together to solve the puzzle. According to the induction hypothesis, it took $n_{1}-1$ moves to put together the one block, and $n_{2}-1$ moves to put together the other block.
Including the last move to unite the two blocks, the total number of moves is equal to

$$
\left[\left(n_{1}-1\right)+\left(n_{2}-1\right)\right]+1=(k+1)-1=k
$$

$P(k+1)$ is true when $P(i)$ is true, where $i \leq k$, and therefore $P(n)$ is true for any puzzle size.

2020-03-19

Proof by weak induction

- Show base case: $\mathrm{P}(20)$:
$-20=5+5+5+5$
- Inductive hypothesis: Assume $P(k)$ is true
- Inductive step: Show that $P(k+1)$ is true
- If $P(k)$ uses a 5 cent stamp, replace one stamp with a 6 cent stamp
- If $\mathrm{P}(k)$ does not use a 5 cent stamp, it must use only 6 cent stamps
- Since $k>18$, there must be four 6 cent stamps
- Replace these with five 5 cent stamps to obtain $k+1$

Strong induction vs. non-strong induction

- Determine which amounts of postage can be written with 5 and 6 cent stamps
- Prove using both versions of induction
- Answer: any postage ≥ 20

This one can also be phrased closer to previous pages format: Prove that any postage ≥ 20 can be written with $5 \& 6$ cent stamps 2020-03-19

Proof by strong induction

- Show base cases: $P(20), P(21), P(22), P(23)$, and $P(24)$
$-20=5+5+5+5$
$-21=5+5+5+6$
$-22=5+5+6+6$
$-23=5+6+6+6$
$-24=6+6+6+6$
- Inductive hypothesis: Assume $\mathrm{P}(20), \mathrm{P}(21), \ldots, \mathrm{P}(k)$ are all true
- Inductive step: Show that $P(k+1)$ is true
- We will obtain $\mathrm{P}(k+1)$ by adding a 5 cent stamp to $\mathrm{P}(k+1-5)$
- Since we know $P(k+1-5)=P(k-4)$ is true, our proof is complete

2020-03-19

The Well-Ordering Property

- The validity of mathematicatingliction follows from the Well-pyefting Property (WOP), which is
- a fundamentagaxiom of number theory.
- WOP styP? that every nonempty set of nop-megative integers has a least element.
- This axiom can be used directly in proofs of theorems relating to sets of integers.

2020-03-19
it continues

The Well-Ordering Property

- Well-ordering property Axiom says that:
- Every non-empty set of non-negative integers has a minimal (smallest, least) element.

```
- \forall\varnothing\subsetS\subseteq\mathbb{N}:\existsm\inS : }\foralln\inS:m\leq
```

- and thus, WOP proves that the Induction is valid because
- This implies that $\{n \mid \neg P(n)\}$ (if non-empty) has a min. element m, but then the assumption that $P(m-1) \rightarrow P((m-1)+1)$ would be contradicted.

$$
\text { (check also page } 278 \text { in } 6^{\text {th }} \text { edition and } 314 \text { in } 7^{\text {th }} \text { one of the book) }
$$

A standard way to use Well Ordering to prove that some property, $\mathrm{P}(\boldsymbol{n})$ holds for every nonnegative integer \boldsymbol{n}
To prove that " $P(n)$ is true for all $n \in \mathbb{N}$ " using the Well Ordering Principle:

- Define the set, C, of counterexamples to P being true. Namely, define ${ }^{n}$

$$
C::=\{n \in \mathbb{N} \mid P(n) \text { is false }\} .
$$

- Assume for proof by contradiction that C is nonempty.
- By the Well Ordering Principle, there will be a smallest element, n, in C.
- Reach a contradiction (somehow) —often by showing how to use n to find another member of C that is smaller than n. (This is the open-ended part of the proof task.)
- Conclude that C must be empty, that is, no counterexamples exist. QED
${ }^{a}$ The notation $\{n \mid P(n)\}$ means "the set of all elements n. for which $P(n)$ is true.

or, in another way

Why is mathematical induction a valid proof technique?

- The reason comes from the well ordering property for the set of positive integers.
- Suppose we know that $P(1)$ is true and that the proposition $P(k)$ -> $P(k+1)$ is true for all positive integers k. To show that $P(n)$ must be true for all positive integers n, assume that there is at least one positive integer for which $P(n)$ is false. Then the set S of positive integers for which $P(n)$ is false is nonempty.
- Thus, by the well-ordering property, S has a least element, which will be denoted by m. We know that m cannot be 1 , because $P(1)$ is true. Because m is positive and greater than 1 $m-1$ is a positive integer. Furthermore, because $m-1$ is less than m , it is not in S , so $P(m-1)$ must be true. Because the conditional statement $P(m-1)->P(m)$ is also true, it must be the case that $P(m)$ is true. This contradicts the choice of m. Hence, $P(n)$ must be true for every positive integer n.

2020-03-19

and, in the plainest English the last statements go as:

You assume that

- the set of integers S for which $\mathrm{P}(n)$ is false is nonempty. By WOP, there would be a smallest positive integer k for which $P(k)$ is false.
- You then obtain a contradiction, showing that S must be empty.
- The contradiction is derived from the fact that for positive integer j with $j<k, \mathrm{P}(j)$ must be true due to the way k was chosen.

Example 6 Proof by WOP now

- Theorem: Every natural number n can be written as a product of primes.
- Proof: Let \mathbf{S} be the set of natural numbers that cannot be written as a product of primes. Then by the WOP, S has a smallest element, which we will call n. n must not be a prime, because if it was, it could be written as a product of one prime, itself.
- Thus $n=r s$ for some numbers such that $1<r, s<n$. Since both r and s are smaller than n, both can be written as products of primes. But that means that n is the product of primes, which is a contradiction. Thus the set S must be empty.
- In other words, there is no set of natural numbers that cannot be written as product of primes

2020-03-19

Example 7 Proof by both Induction and WOP

- Theorem: Every positive integer n is either bigger or equal 1, i.e., $n \geq 1$
- Proof by induction:
- Basis step: $P(1)$ holds because $1 \geq 1$
- Assuming $P(n)$ is true, i.e., $n \geq 1$, add 1 to both side $n+1 \geq 2>1$
- which is $P(n+1)$. That is, $P(n+1)$ is true, whenever $P(n)$ is true.

Proof by WOP:
Suppose there does exist a positive integer less then 1. By WOP there must exist a least positive integer a such that

$$
0<a<1
$$

Multiplying both sides by positive integer a

$$
0<a^{2}<a
$$

- Therefore, \boldsymbol{a}^{2} is a positive integer less than \boldsymbol{a} which is also less than 1 This contradicts a's property of being the least positive integer less than 1 Hence, there exists no positive integer less than 1.

Recursion

2020-03-19

4.3 \& 4.4: Recursive Definitions

In induction, we prove all members of an infinite set satisfy some predicate P by:

- proving the truth of the predicate for larger members in terms of that of
smaller members. smaller members. \qquad
Induction proves some-GLOSED FORM EXPRESSION. -
In recursive definitions, we similarly define a function, a predicate, a set, or a more complex structure over an infinite domain (universe of discourse) by:
- defining the function, predicate value, set membership, or structure of larger elements in terms of those of smaller ones.

In structural induction, we inductively prove properties of recursively-defined objects in a way that parallels the objects' own recursive definitions.

2020-03-19

What is a meaning of defining in terms of itself?

$$
\begin{aligned}
& \text { For example, let } f(x)=x \text { ! } \\
& \text { We can define } f(x) \text { as } \\
& f(x)=x^{*} f(x-1) \text {, or one can also use } \\
& f(x+1)=(x+1) * f(x)
\end{aligned}
$$

Recursion

- Recursion is the general term for the practice of defining an object in terms of itself
- or of part of itself
- An inductive proof establishes the truth of $P(n+1)$ recursively in terms of $P(n)$.
- There are also recursive algorithms, definitions, functions, sequences, sets, and other structures.

... more recursion examples

- Find $f(1), f(2), f(3)$, and $f(4)$, where $f(0)=1$
a) Let $f(n+1)=f(n)+2$
- $f(1)=f(0)+2=1+2=3$
- $f(2)=f(1)+2=3+2=5$
- $f(3)=f(2)+2=5+2=7$
$f(4)=f(3)+2=7+2=9$
b) Let $f(n+1)=3 f(n)$
- $f(1)=3^{*} f(0)=3^{* 1} 1=3$
- $f(2)=3^{*} f(1)=3^{*} 3=9$
- $f(3)=3^{*} f(2)=3^{*} 9=27$

> And, the closed form for this series is $$
a_{n}=2 n+1, n=0,1,2, \ldots
$$

- $f(4)=3^{*} f(3)=3^{*} 27=81$

And, the closed form for this series is $a_{n}=3^{n}, n=0,1,2, \ldots$

... more recursion examples

Recursively Defined Functions

Find $f(1), f(2), f(3)$, and $f(4)$
where $f(0)=1$
c) Let $f(n+1)=2^{f(n)}$

```
f(1)=\mp@subsup{2}{}{f(0)}=\mp@subsup{2}{}{1}=2
    f(2)=2f(1)}=\mp@subsup{2}{}{2}=
    f(3)=2f(2)=24}=1
    f(4)=\mp@subsup{2}{}{f(3)}=\mp@subsup{2}{}{16}=65536
d) Let f(n+1)=f(n)}\mp@subsup{)}{}{2}+f(n)+
    f(1)=f(0)}\mp@subsup{}{}{2}+f(0)+1=12
    1+1=3
    f(2)=f(1)2}+f(1)+1=\mp@subsup{3}{}{2}
    3+1=13
    - f(3)=f(2)}\mp@subsup{)}{}{+}f(2)+1=13\mp@subsup{3}{}{2
    +13+1 = 183
    f(4)=f(3)}\mp@subsup{}{}{2}+f(3)+1=18\mp@subsup{3}{}{2
    +183+1=33673

Simplest case:
One way to define a function \(f\) : \(\mathbb{N} \rightarrow S\) (for any set \(S\) ) or series \(a_{n}=f(n)\) is to:
- Define \(f(0)(f(1), f(2), \ldots, f(n-1))\).
- For \(n>0\), define \(f(n)\) in terms of \(f(0), \ldots, f(n-1)\).

Ex. Define the series \(a_{n}: \equiv 2^{n}\) recursively:
- Let \(a_{0}: \equiv 1\).
- For \(n>0\), let \(a_{n}: \equiv \mathbf{2} a_{n-1}\).

\section*{Another Example}
- Suppose we define \(f(n)\) for all \(n \in \mathbb{N}\) recursively by:
- Let \(f(0)=3\)
- For all \(n \in \mathbb{N}\), let \(f(n+1)=2 f(n)+3\)

\section*{Recursive Definition of Factorial}
- Give an inductive (recursive) definition of the factorial function,
\[
F(n): \equiv n!: \equiv \prod_{1 \leq i \leq n} i=1 \cdot 2 \cdot \ldots \cdot n .
\]
- Base case: \(F(0): \equiv 1\)
- Recursive part: \(F(n): \equiv n \cdot F(n-1)\).
- \(F(1)=1\)
- \(F(2)=2\)
- \(F(3)=6\)
- \(F(4)=24\)...

2020-03-19

\section*{More Easy Examples}
- Write down recursive definitions for:
- a•n (a real, \(n\) natural) using only addition
\(-a^{n}\) (a real, \(n\) natural) using only multiplication
\(-\sum_{0 \leq i \leq n} a_{i}\) (for an arbitrary series of numbers \{aj\})
- \(\prod_{0 \leq i \leq n} a_{i}\) (for an arbitrary series of numbers \{aj\})

It's over with easy stuff!!! From now on it's getting much tougher.
Fibonacci sequence is a good old, and often useful today, series
- Definition of the Fibonacci sequence
- Non-recursive, or closed form: \(F(n)=\frac{(1+\sqrt{5})^{n}-(1-\sqrt{5})^{n}}{\sqrt{5} \cdot 2^{n}}\)
- Recursive:
\[
F(n)=F(n-1)+F(n-2)
\]
\[
F(n+1)=F(n)+F(n-1)
\]
- Must always specify base case(s)!
\(-F(1)=0, F(2)=1\)
- Note that some will use \(F(0)=0, F(1)=1\)

\section*{The Fibonacci Series}
- The Fibonacci series \(f_{n \geq 0}\) is a famous series defined by:
\[
f_{0}: \equiv 0, \quad f_{1}: \equiv 1, \quad f_{n \geq 2}: \equiv f_{n-1}+f_{n-2}
\]
\(0+1=1,1+1=2,1+2=3,2+3=5,3+5=8\) or simply,
\(0,1,1,2,3,5,8,13,21,34,55,89,144,233,377,610,987, \ldots\), infinity


\section*{Inductive Proof about Fib. Series - Upper Bound}

Run Fibonacci_Bounds.m now
```

Theorem. }\mp@subsup{f}{n}{}<2\mp@subsup{2}{}{n}\mathrm{ .

```

Proof. By induction. 〔 Implicitly for all \(n \in \mathbb{N}\)
Base cases: \(\left.\begin{array}{ll}f_{0}=0<2^{0}=1 \\
& f_{1}=1<2^{1}=2\end{array}\right\}\)\begin{tabular}{l} 
Note use of \\
base cases of \\
recursive def' \(n\).
\end{tabular}
- Inductive step: Use \(2^{\text {nd }}\) principle of induction (strong induction). Assume \(\forall k<n, f_{k}<2^{k}\).
- Then \(f_{n}=f_{n-1}+f_{n-2}\) and obviously
\[
f_{n}<2^{n-1}+2^{n-2}<2^{n-1}+2^{n-1}=2^{n}
\]

2020-03-19

\section*{A lower bound on Fibonacci series}

Theorem. For all integers \(n \geq 3, f_{n}>\alpha^{n-2}\), where \(\alpha=\left(1+5^{1 / 2}\right) / 2 \approx 1.61803 . \quad\) We'll show soon

Proof. (Using strong induction.) where is this
- Let \(P(n)=\left(f_{n}>\alpha^{n-2}\right)\).
- Base cases:

For \(n=3, \alpha^{3-2}=\alpha \approx 1.61803<2=f_{3}\).
For \(n=4, \alpha^{4-2}=\alpha^{2}=\left(1+2 \cdot 5^{1 / 2}+5\right) / 4=\left(3+5^{1 / 2}\right) / 2 \approx 2.61803<3\) \(=f_{4}\).
- Inductive step:

For \(k \geq 4\), assume \(P(j)\) for \(3 \leq j \leq k\), prove \(P(k+1)\). Note \(\alpha^{2}=\alpha+1\) \(\alpha^{(k+1)-2}=\alpha^{k-1}=\alpha^{2} \alpha^{k-3}=(\alpha+1) \alpha^{k-3}=\alpha^{k-2}+\alpha^{k-3}\). By inductive hypothesis, \(f_{k-1}>\alpha^{k-3}\) and \(f_{k}>\alpha^{k-2}\). So, \(\alpha^{(k+1)-2}=\alpha^{k-2}+\alpha^{k-3}<f_{k}+f_{k-1}=f_{k+1}\). Thus \(P(k+1)\).
2020-03-19

\section*{Proof of Lamé's Theorem}
- Consider the sequence of divisionalgorithm equations used in Euclid's algorithm:
\[
\begin{array}{ll}
-r_{0}=r_{1} q_{1}+r_{2} & \text { with } 0 \leq r_{2}<r_{1} \\
-r_{1}=r_{2} q_{2}+r_{3} & \begin{array}{l}
\text { Where } a=r_{0} \\
b=r_{1}, \text { and } \\
\operatorname{gcd}(a, b)=r_{n}
\end{array} \\
-\ldots & \text { with } 0 \leq r_{3}<r_{2} \\
-r_{n-2}=r_{n-1} q_{n-1}+r_{n} & \text { with } 0 \leq r_{n}<r_{n-1} \\
-r_{n-1}-1 n q_{n}+r_{n+1} & \text { with } r_{n+1}=0 \text { (terminate) }
\end{array}
\]
- Thenumber of divisions (iterations) is \(n\).

2020-03-19
Continued on next slide... 51/77

\section*{Lamé's Theorem}
- Thm. \(\forall a, b \in Z^{+}, a \geq b\), the number of steps in Euclid's algorithm to find \(\operatorname{gcd}(a, b)\) is \(\leq 5 k\), where \(k=\left\lfloor\log _{10} b\right\rfloor+1\) is the number of decimal digits in \(b\).
- Thus, Euclid's algorithm is lineartime in the number of digits in \(b\).
- Proof:

\section*{Lamé Proof, continued}
- Since \(r_{0} \geq r_{1}>r_{2}>\ldots>r_{n}\)
each quotient \(q_{i} \equiv\left\lfloor r_{i-1} / r_{i}\right\rfloor^{n} \geq 1, \mathrm{i}=1, \ldots, n-1\).
- Since \(r_{n-1}=r_{n} q_{n}\) and \(r_{n-1}>r_{n}, q_{n} \geq 2\).
- So we have the following relations hefiveen \(r\) and \(f\) :
- \(r_{n} \geq 1=f_{2}\)
- \(r_{n-1} \geq 2 r_{n} \geq 2=f_{3}\)
- \(r_{n-2} \geq r_{n-1}+r_{n} \geq f_{2}+f_{3}=f_{4}\)
-
\(-r_{2} \geq r_{3}+r_{4} \geq r_{n-1}+f_{n-2}=n\)
\(-b=r_{1} \geq r_{2}+r_{3} \geq f_{n}+f_{n+1}\).
- Thus, if \(n>2\) divisions are used, then \(b \geq f_{n+1}>\alpha^{n-1}\).
- Thus, \(\log _{10} b>\log _{10}\left(\alpha^{n-1}\right)=(n-1) \log _{10} \alpha \approx(n-1) 0.208>(n-1) / 5\).
- If \(b\) has \(k\) deelimal digits, then \(\log _{10} b<k\), so \(n-1<5 k\), so \(n \leq 5 k\).


2020-03-19

\section*{Recursively Defined Sets}
- An infinite set \(S\) may be defined recursively, by giving:
i) A small finite set of base elements of \(S\).
ii) A rule for constructing new elements of \(S\) from previously-established elements.
iii) Implicitly, \(S\) has no other elements but these.
- Example. Let \(3 \in S\), and let \(x+y \in S\) if \(x, y \in S\). What is \(S\) ?

What about this? \(3+3=6,3+6=9,6+6=12,3+9=12\),.
2020-03-19

\section*{Other Easy String Examples}
- Give recursive definitions for:
- The concatenation of strings \(w_{1} \cdot w_{2}\).
- The length \(\ell(w)\) of a string \(w\).
- Well-formed formulae of propositional logic involving \(\mathbf{T}, \mathbf{F}\), propositional variables, and operators in \(\{\neg, \wedge, \vee, \rightarrow, \leftrightarrow\}\).
- Well-formed arithmetic formulae involving variables, numerals, and operations in \(\{+,-\), *, \(\uparrow\}\).

\section*{The Set of All Strings}

Def. Given an alphabet \(\Sigma\), the set \(\Sigma^{*}\) of all strings over \(\Sigma\) can be recursively defined by:
\(\lambda \in \Sigma^{*}(\lambda: \equiv\) "the empty string")
- \(\quad w \in \Sigma^{*} \wedge x \in \Sigma \rightarrow w x \in \Sigma^{*}\)

Note that wx is a string not a product
- Exercise: Prove that this definition is equivalent to our old one:
\[
\Sigma^{*}: \equiv \bigcup_{n \in \mathbf{N}} \Sigma^{n}
\]

2020-03-19


\section*{Illustrating Rooted Tree Def'n.}
- How rooted trees can be combined to form a new rooted tree...


2020-03-19 57/77

\section*{Extended Binary Trees}
- A special case of rooted trees.
i) The empty set \(\varnothing\) is an EBT.
ii) If \(T_{1}, T_{2}\) are disjoint EBTs, then \(e_{1} \cup e_{2} \cup T_{1} \cup T_{2}\) is an EBT, where

\section*{\(e_{1}=\varnothing\) if \(T_{1}=\varnothing\), and}
\(e_{1}=\left\{\left(r, r_{1}\right)\right\}\) if \(T_{1} \neq \varnothing\) and
has root \(r_{1}\), and
similarly for \(e_{2}\).
iii) That is all.

\section*{Full Binary Trees}
- A special case of extended binary trees.

Def. Recursive definition of full binary trees (FBT):
- i) A single node \(r\) is a FBT.
- Note this is different from the EBT base case.
- ii) If \(T_{1}, T_{2}\) are disjoint FBTs,
then \(e_{1} \cup e_{2} \cup T_{1} \cup T_{2}\),
where
\(e_{1}=\varnothing\) if \(T_{1}=\varnothing\), and
\(e_{1}=\left\{\left(r, r_{1}\right)\right\}\) if \(T_{1} \neq \varnothing\) and
similarly for
similarly for \(e_{2}\)
- Note this is the same as the EBT recursive case!
- Can simplify it to "If \(T_{1}, T_{2}\) are disjoint FBTs with roots \(r_{1}\) and \(r_{2}\), then \(\{(r\),
\(\left.\left.r_{1}\right),\left(r, r_{2}\right)\right\} \cup T_{1} \cup T_{2}\) is an FBT."
- i) That is all.

\section*{Structural Induction}
- Proving something about a recursively defined object using an inductive proof whose structure mirrors the object's definition.

\section*{Example}

Thm. Let \(3 \in S\), and let \(x+y \in S\) if \(x, y \in S\), and that is all. Let \(A=\left\{n \in \mathbb{Z}^{+} \mid(3 \mid n)\right\}\).
Than \(A=S\).
Proof. We show that \(A \subseteq S\) and \(S \subseteq A\).
- To show \(A \subseteq S\), show \(\left[n \in Z^{+} \wedge(3 \mid n)\right] \rightarrow n \in S\).
- Inductive proof. Let \(P(n): \equiv n \in S\). Induction over positive multiples of 3 . Base case. \(n=3\), thus \(3 \in S\) by def \(n\). of \(S\) and \(3 \in S\), so by def'n of \(S, n+3 \in S\)
- To show \(S \subseteq A\) : let \(n \in S\), show \(n \in A\).
- Structural inductive proof. Let \(P(n): \equiv n \in A\).

Base case. \(3 \in S\). Since \(3 \mid 3,3 \in A\).
Recursive step. \(x, y \in S, n=x+y \in S\) and \(x, y \in A\). Since \(3 \mid x\) and \(3 \mid y\), we have \(3 \mid(x+y)\), thus \(x+y=n \in A\).
- stop


\section*{Recursive Algorithms (§4.4)}
- Recursive definitions can be used to describe algorithms as well as functions and sets.

A procedure to compute \(a^{n}\).
procedure power( \(a \neq 0\) : real, \(n \in \mathbb{N}\) )
if \(n=0\) then return 1
else return \(a\) - power (a, \(n-1\) )

\section*{Efficiency of Recursive Algorithms}
- The time complexity of a recursive algorithm may depend critically on the number of recursive calls it makes.

Ex. Modular exponentiation to a power \(n\) can take \(\log (n)\) time if done right, but linear time if done slightly differently.
- Task: Compute \(b^{n}\) mod \(m\), where \(m \geq 2, n \geq 0\), and \(1 \leq b<m\).

\section*{Modular Exponentiation Alg. \#1}
- Uses the fact that \(b^{n}=b \cdot b^{n-1}\) and that \(x \cdot y \bmod m=x \cdot(y \bmod m) \bmod m\). (Prove the latter theorem at home.)
- procedure mpower \((b \geq 1, n \geq 0, m>b \in \mathbb{N})\)
- \(\quad\) Returns \(\left.b^{n} \bmod m.\right\}\)
if \(n=0\)
then return 1
else return \((b \cdot \operatorname{mpower}(b, n-1, m)) \bmod m\)
- Note this algorithm takes \(\Theta(n)\) steps!

2020-03-19

\section*{Modular Exponentiation Alg. \#2}
- Uses the fact that \(b^{2 k}=b^{k \cdot 2}=\left(b^{k}\right)^{2}\).
- procedure mpower \((b, n, m)\) \{same signature\}
- if \(n=0\) then return 1
else if \(2 \mid n\)
then return mpower \((b, n / 2, m)^{2} \bmod m\)
else return (mpower \((b, n-1, m) \cdot b) \bmod m\)
-What is its time complexity? \(\Theta(\log n)\) steps

2020-03-19

\section*{A Slight Variation}
- Nearly identical but takes \(\Theta(n)\) time instead!
- procedure mpower \((b, n, m)\) \{same signature \(\}\)
- if \(n=0\) then return 1
else if \(2 \mid n\)
then return (mpower \((b, n / 2, m)\)
\(\operatorname{mpower}(b, n / 2, m)) \bmod m\)
else return (mpower \((b, n-1, m) \cdot b) \bmod m\)

The number of recursive calls made is critical!
2020-03-19
\(67 / 77\)
- procedure \(\operatorname{gcd}(a, b \in \mathbf{N})\) if \(a=0\)
then return \(b\)
else return \(g c d(b \bmod a, a)\)

\section*{Recursive Euclid's Algorithm}
- Note recursive algorithms are often simpler to code than iterative ones...
- However, they can consume more stack space, if your compiler is not smart enough.

\section*{Recursive Linear Search}
- Note there is no real advantage to using recursion here, rather than just looping for loc := \(i\) to \(j\)..
- procedure search(a: series; i, j: integer; \(x\) : item to be found)
if \(a_{i}=x\)
then return \(i\) \{At the right item? Return it!\}
if \(i=j\)
then return 0 (No locations in range? Failure! \}
return search (i+1, \(j, x)\) \{Try rest of range\}

\section*{Recursive Fibonacci Algorithm}
```

- procedure fibonacci(n \in N
if }n=

```
        then return 0
    if \(n=1\)
        then return 1
    return fibonacci( \(n-1\) ) +fibonacci(n-2)
-Is this an efficient algorithm?
- Is it polynomial-time in \(n\) ?
- How many additions are performed?

\section*{Recursive Binary Search}
- procedure binarySearch(a, x, i, j) \{same sig
```

{Find location of }x\mathrm{ in }a,\geqi and <j

```
\(m:=\lfloor(i+j) / 2\rfloor \quad\{G o\) to halfway point.
if \(X=a_{m}\)
    then return \(m\) \{Did we luck out?\}
if \(x<a_{m} \wedge i<m\)
    then return binarySearch \((a, x, i, m-1)\) \{Check
that
else if \(a_{m}<x \wedge m<j\) \{If it's to right, \}
then return binarySearch \((a, x, m+1, j)\) \{Check
else
    return \(0 \quad\{\) No more items, failure.

\section*{Analysis of Fibonacci Procedure}

Thm. The preceding procedure for fibonacci(n) performs \(f_{n+1}-1\) addition operations.

Proof. By strong structural induction over \(n\), based on the procedure's own recursive definition.
- Base cases: fibonacci(0) performs 0 additions, and \(f_{0+1}-1=\) \(f_{1}-1=1-1=0\). Likewise, fibonacci(1) performs 0 additions, and \(f_{1+1}-1=f_{2}-1=1-1=0\).
- Inductive step: For \(n>1\), by strong inductive hypothesis, fibonacci \((n-1)\) and fibonacci( \(n-2)\) do \(f_{n}-1\) and \(f_{n-1}-1\) additions respectively, and fibonacci( \(n\) n adds 1 more, for a total of \(f_{n}-1+f_{n-1}-1+1=f_{n}+f_{n-1}+1=f_{n+1}+1\).

\section*{A more efficient algorithm}
- procedure findFib( \(a, b, m, n\) )
\{Given \(a=f_{m-1}, b=f_{m}\), and \(m \leq n\), return \(f_{n}\) \}
if \(m=n\)
then return \(b\)
return findFib( \(b, a+b, m+1, n)\)
- procedure fastFib( \(n\) ) \{Find \(f_{n}\) in \(\Theta(n)\) steps.\} if \(n=0\)
then return 0
return findFib \((0,1,1, n)\)

2020-03-19

\section*{Recursive Merge Method}
- procedure merge(A,B: sorted lists)
```

 {Given two sorted lists A=((a, ,.., a (a||})\mathrm{ ,
    ```
    \(B=\left(b_{1}, \ldots, b_{|B|}\right)\), return a sorted list of
    all. \(\}\)
    - if \(A=\) (
        then return \(B\) \{If \(A\) is empty, it's \(B\).
    if
        \(B=()\)
        then return \(A\) \{If \(B\) is empty, it's \(A\).
    if \(a_{1}<b_{1}\)
    then return \(\left(a_{1}, \operatorname{merge}\left(\left(a_{2}, \ldots a_{|A|}\right), B\right)\right)\)
    else return \(\left(b_{1}, \operatorname{merge}\left(A,\left(b_{2}, \ldots, b_{|B|}\right)\right)\right)\)

\section*{Recursive Merge Sort}
- procedure \(\operatorname{sort}\left(L=\ell_{1}, \ldots, \ell_{n}\right)\)
if \(n>1\)

\section*{then}
\(m:=\lfloor n / 2\rfloor \quad\) \{this is rough \(\frac{1 / 2}{2}\)-way point \}
\(L:=\operatorname{merge}\left(\operatorname{sort}\left(\ell_{1}, \ldots, \ell_{m}\right)\right.\),
\(\left.\operatorname{sort}\left(\ell_{m+1}, \ldots, \ell_{n}\right)\right)\)
\}
return L
- The merge (next slide) takes \(\Theta(n)\) steps, and merge-sort takes \(\Theta(n \log n)\).

2020-03-19

\section*{Merge Routine}
- procedure merge( \(A, B\) : sorted lists)
\(L=e m p t y\) list
\(i:=0, j:=0, k:=0\)
while \(i<|A| \wedge j<|B| \quad\{|A|\) is length of \(A\}\) if \(i=|A|\) then \(L_{k}:=B_{j} ;\) \(j:=j+1\)
) else if \(j=|B|\) then
\(L_{k}:=A_{i} ;\)
\(i:=i+\)
\} else if \(A_{i}<B_{j}\) then \(\{\) \(L_{k}:=A_{i}\);
- \} else
- \(\quad L_{k}:=B_{j}\);
- \(\quad\) j \(:=j+1\)
- \(k \quad \begin{aligned} & \text { \} } \\ & k+1\end{aligned}\)
return \(I\)
2020-03-19
\begin{tabular}{|l|}
\hline \multicolumn{1}{|c|}{ References } \\
- Rosen \\
Discrete Mathematics and its Applications, 6 e \\
Mc GrawHill, 2007 \\
\\
\\
\\
\\
\(2020-0319\)
\end{tabular}```

